STATISTICAL VERIFICATION OF ANALOG CIRCUITS

YAN ZHANG SRIRAM SANKARANARAYANAN

UNIVERSITY OF COLORADO AT BOULDER

XIN CHEN ERIKA ÁBRAHÁM

RWTH AACHEN UNIVERSITY

ANALOG CIRCUITS ARE HARD TO REASON ABOUT...

ANALOG CIRCUITS ARE HARD TO REASON ABOUT...

• Behavioral verification

• A lot of exciting progress

ANALOG CIRCUITS ARE HARD TO REASON ABOUT...

• Behavioral verification

- A lot of exciting progress
- Transistor-level

- Over-simplified device models
- Unverified higher-level abstraction, e.g., op-amp models

ABOUT THIS TALK

- Focus on transistor-level circuits
 - Variations: process, voltage, temperature
- Introduce a statistical verification approach
 - Verify interesting properties
 - Provide useful information to designers

Simple
System/
ODEs

Complicated
System/
Blackbox

Complicated
System/
Blackbox

Complicated
System/
Blackbox

Unknown flow map F(x,t)

Unknown flow map F(x,t)

over-approximates F(x,t)?

• However, it is expensive, if not impossible

- However, it is expensive, if not impossible
- Alternatively, = (I + I)

$$\varphi = \forall x \in [t_0, t_1].F(x,t)$$
 lies inside

- However, it is expensive, if not impossible
- Alternatively, = (I + I)

$$\varphi = \forall x \in [t_0, t_1].F(x,t)$$
 lies inside

- Ask whether $\models P_{(\geq 0.99)}(\varphi)$
 - A statistical model checking (SMC) problem

- Hypothesis test: H_0 : $p \ge 0.99$ vs H_1 : p < 0.99
 - Sequential probability ratio test (Younes et. al)
 - Sequential Bayesian test (Clarke et. al)

- Hypothesis test: H_0 : $p \ge 0.99$ vs H_1 : p < 0.99
 - Sequential probability ratio test (Younes et. al)
 - Sequential Bayesian test (Clarke et. al)

- Hypothesis test: H_0 : $p \ge 0.99$ vs H_1 : p < 0.99
 - Sequential probability ratio test (Younes et. al)
 - Sequential Bayesian test (Clarke et. al)

- Hypothesis test: H_0 : $p \ge 0.99$ vs H_1 : p < 0.99
 - Sequential probability ratio test (Younes et. al)
 - Sequential Bayesian test (Clarke et. al)

- Hypothesis test: H_0 : $p \ge 0.99$ vs H_1 : p < 0.99
 - Sequential probability ratio test (Younes et. al)
 - Sequential Bayesian test (Clarke et. al)
- Outcome: accept/reject H₀ with specified confidence (usually high, e.g., 0.99)

EMPIRICAL FLOWPIPE CONSTRUCTION

• Sample and simulate

Compute models to approximate dynamics

• Bloat models for over-approximation

EMPIRICAL FLOWPIPE CONSTRUCTION

• Sample and simulate

Compute models to approximate dynamics

• Bloat models for over-approximation

EMPIRICAL FLOWPIPE CONSTRUCTION

• Sample and simulate

- Compute models to approximate dynamics
 - Taylor models (p, I) (Berz et. al)
- Bloat models for over-approximation

 $C_1 = 100 pF \pm 10\%$ $t \in [0,18 ns], 2 ns/snapshot$

C₁ = 100pF±10% t∈[0,18ns], 2ns/snapshot

 $C_1 = 100 pF \pm 10\%$ $t \in [0, 18 \text{ns}], 2 \text{ns/snapshot}$

Observations:

- Oscillation
- No limit cycle yet
- Longer flowpipes

 $L_1=19.462 nH \pm 5\%$

 $L_1=19.462nH\pm 5\%$

 $ic(V_{C1}) \in [0.45, 0.55], ic(V_{C2}) \in [-0.05, 0.05]$

 $ic(V_{C1}) \in [0.45, 0.55], ic(V_{C2}) \in [-0.05, 0.05]$

CONCLUSION

• Enable statistical reachability

CONCLUSION

• Enable statistical reachability

• Enable robustness checking

CONCLUSION

• Enable statistical reachability

• Enable robustness checking

• Enable verification of large circuits

Q & A