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Motivation

 Check equivalence between two designs described on 

the same abstraction level and possibly on different 

levels

 What abstraction/representation can we use for Analog?
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State Space Representation

 Dynamic system

 State space equation

 Represents a circuit as an ordinary differential equation 

(ODE) set

 Describes a circuit’s transient behavior

 Vector fields – dX/dt = f(X,u,t)
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x` = y

y` = -e*y-sin(x)



Markov Chain Representation

 Dynamic system and Markov Chain

 With discretization of both time and state value, it 

becomes Markov Chain

• Also it could easily reflect PVT variations

 P(Xnext|Xcurrent) instead of dX/dt = f(X,u,t)
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gA(A,B,A`,B`,t)=0 

gB(A,B,C,A`,B`,C`,t)=0

gC(B,C,B`,C`,t)=0 P(A[n+1], B[n+1], C[n+1] | A[n], B[n], C[n])

A`= fA(A,B,C,t)

B`= fB(A,B,C,t)

C`= fC(A,B,C,t)



Equivalence in Analog System

 When two systems’ transition probabilities are same, 

two systems are equivalent

 Compare Pref(Xnext|Xcurrent) and Pdut(Xnext|Xcurrent)

 However, as circuit size increases, the number of 

states to check grows exponentially !

 A PLL with 300 nodes requires comparison 

of 300 dimensional transition probability
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One Abstraction in Analog

 Circuit graph
 Represents a circuit as a connectivity graph and check 

equivalence based on their graph structures

 Layout versus schematic (LVS)

 Observation
 Not all circuit nodes are directly connected

 Could we use this localization property to reduce complexity of 

comparing two high dimensional transition probabilities ?
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Localization Property and Conditional 

Independence among Circuit Nodal Responses

 Each nodal voltage/branch currents are unknowns or random 

variables

 A circuit is represented by a set of differential-algebraic equations 

that each equation is formed around these nodes

 With the given small time step, this set becomes algebraic equation 

set that could be separately solved when their boundary random 

variables are known – conditional independence !
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Markov Network Representation

 Graphical model that includes all the conditional independences 

among circuit nodal responses
 Each nodal voltage corresponds to a random variable

 Construct an edge between two random variables when they directly interact

 Factorization property

 Joint state distribution can be factorized into maximal cliques in the 

Markov network

 Instead of comparing high dimensional transition probabilities, we 

can instead compare low dimensional factors of them !

 P(An, An+1,Bn,Bn+1,Cn,Cn+1,Dn,Dn+1,En,En+1,Fn,Fn+1) = 

K*Φ1(An,An+1,Bn,Bn+1) Φ2(Bn,Bn+1,Cn,Cn+1) Φ3(Cn,Cn+1,Dn,Dn+1,En,En+1,Fn,Fn+1)
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Learning Potentials

 Learning potentials is difficult task for a general graph
 There could be many different potentials for a given Markov 

network due to normalization [Sandberg]

 However, for a decomposable graph, potentials can be 

estimated as a marginal of clique member nodes
 Normalization factor is not needed to be estimated
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P(A,B,C,D,E,F) = 

[ P(A,B)P(B,C)P(C,D,E,F) ] / 

[ P(B)P(C) ]



Markov Network Based Equivalence 

Checking

 Compare two systems’ state distributions by 

comparing factors of two full joint distributions

 Transition probabilities when inspecting dynamic behaviors

 State distributions when inspecting static behaviors
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Network Reduction

 Not every node in a circuit is independent random 

variable
 In other words, it can be expressed as a function of other 

variables or just a constant

 Not every node in the Markov network is independent 

random variable

 Markov network can be reduced before transition 

probability comparison
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Entropy Based Network Reduction (1) 

 Remove determinate nodes
 Determinate node settles to a certain value regardless of its 

initial state and it is determined by the other nodes’ values 

can be removed

 Determinate node and Indeterminate node can distinguished 

by “X”

– Settled / Unsettled  H(X)=0 / H(X)!=0  non-X / X
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Entropy Based Network Reduction (2) 

 Remove dependent nodes
 If B=f(A), node B can be removed

 Dependent Xs can be extracted by conditional entropy

– H(B|A)=0  B depends on A

– H(Y|X1,..,Xk)=0  Y depends on X1,…,Xk
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Proposed Markov Network Based 

Equivalence Check

1. Extract a connectivity graph from two netlists, run short simulations with 
uniform random initial conditions and reduce the graphs by the entropy 
based method (Network reduction)

2. Graph isomorphism test (like LVS)
 If they are different, report inequivalence

3. Triangularize the graph (make graph decomposable)

4. Learn clique marginals of the MN representations of circuits

5. Compare two corresponding clique marginals with Jensen–Shannon 
divergence
 JSD(P || Q) = D(P || M)/2+D(Q || M)/2, M = (P+Q)/2

 If any factor of two distributions are different more than the given threshold, 
report inequivalence
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Possible Applications

 EX1) two circuit netlists with different process technologies such 

as 90nm and 130nm technologies

 EX2) schematic netlist and layout extracted netlist with parastics
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OSC in 90 nm techOSC in 130nm tech 

JSD



Coupled Ring Oscillator –

Scaling from 0.13um to 90nm
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OSC

in 90 nm tech

OSC 

in 130nm tech 
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CMOS NAND Gate –

Scaling from 0.13um to 90nm
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Coupled Ring Oscillator – Two Designs 

with Different W1:W2 Ratios
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• W1 of reference design is 24

• W2 is fixed to 12

OSC w/

(W1=X, W2=12)

OSC w/

(W1=24, W2=12)

JSD



Complexity of the Proposed 

Equivalence Checking Algorithm
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 Compared two designs with the same topology 

but with different sizes of transistors



Conclusion

 A way to establish the equivalence between two 

analog/mixed-signal circuits based on their Markov 

network representations is proposed
 Check equivalence between two circuits with the same 

topology

 issues

– How to set threshold?

– How to relate JSD distance to a circuit’s performance metrics
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Additional Slides

 Follows
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Possible Abstraction

23



Learning the Potentials

 The general recipe is:
 (1) For every maximal clique C, set the clique 

potential to its empirical marginal

 (2) For every intersection S between maximal 
cliques, associate an empirical marginal with that 
intersection and divide it into the potential of ONE of 
the cliques that form the intersection

 This will give ML estimates for decomposable 
Graphical Models

 In other words, for decomposable graph, we 
can acquire potential from empirical marginals
for every maximal cliques and their interactions
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Source: Tibério Caetano, “Graphical Models - Lecture notes“



Comparison of Two Decomposable 

Markov Networks

 MN1==MN2  every maximal clique C1 in 

MN1 and C2 in MN2 of the same maximal 

clique C and its intersection S, P1(C)==P2(C) 

and P1(S)==P2(S)
 MN1 == MN2  P1(C)==P2(C) and P1(S)==P2(S) 

for every maximal cliques

 P1(C)==P2(C) and P1(S)==P2(S) for every maximal 

cliques  construct potentials according to the 

recipe in the previous slide and derive canonical 

potentials from the previously constructed potentials 

 every of them is same  MN1==MN2
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Decomposable Graph

 Chordal graph

 A graph is chordal if each of its cycles of four or 

more nodes has a chord, which is an edge 

joining two nodes that are not adjacent in the 

cycle
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Kullback–Leibler divergence

 A non-symmetric measure of the difference 

between two probability distributions P and Q

27
http://en.wikipedia.org/wiki/KL_divergence



Jensen–Shannon divergence

 A popular method of measuring the similarity 

between two probability distributions. It is also 

known as information radius (IRad). or total 

divergence to the average. It is based on the 

Kullback–Leibler divergence, with the notable 

(and useful) difference that it is always a finite 

value.
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Markov Network

 Undirected graphical model of a set 
of random variables

 Edges indicate dependency 
relationships between nodes (r.v.s)
 Conditional independence (CI)

– Ex) when B is observed, A and C 
are independent to each other 

 Factorization property
 The joint distribution of all variables 

can be decomposed to a set of 
potential functions among varaibles
in maximal cliques (assuming strictly 
positive pdf)

 P(A,B,C,D,E,…)  
= Φ1 (A,B)*Φ2 (B,C,D,E)*…
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Factorization

 Instead of a high dimensional joint distributions of all 

circuit node variables, it can be expressed as a set of 

decomposed low dimensional potentials of maximal 

cliques
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P(A,B,C,D,E) = Φ1 (A,C,D) Φ2(B,C,D) Φ3(D,E)/Z



Factorization of Nodal Response Distribution
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 P1 = P(A2,A1,B2,B1,C2,C1,D2,D1) is directly estimated 

by samples

 P2 = P(A2,A1,B2,B1,C2,C1)*P(A2,A1,D2,D1)/P(A2,A1)

 JSD(P1,P2) = 0.08671



Factorization of Nodal Response Distribution
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P(A[1])

A[1]

A[2]

full joint est factorization est



Markov Network Representation –

CMOS Inverter Example

 Each circuit nodes in the 

circuit netlist Nodes in the 

Markov network

 Any connection via primitive 

instances such as resistor, 

capacitor or transistor  an 

edge in the Markov network

 Relationships between circuit 

nodes via nodal equations 

probability relationships 

between nodes

P(A,B,GND,VDD)=P(A,B)=P(B|A)P(A)
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Markov Network Based Equivalence 

Checking

 Compare two systems’ transition probabilities by 

comparing factors of two full joint distributions

 If two full joints are same, any of its conditional distributions 

(i.e. transitional probabilities) are same as well

 Static : Pref(A,B,C) and Pdut(A,B,C)

 Dynamic : Pref(A1,A2,B1,B2,C1,C2) and Pdut(A1,A2,B1,B2,C1,C2)
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Static (DC) Dynamic (Transient)



Ring Oscillator –

ptm130 vs ptm090 / scale
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 ref – 013

JSD |Tref-T90|/Tref



Ring Oscillator – W1
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 w2=12



PLL – Divider Size
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